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LETTER TO THE EDITOR 

New exponent for dynamic correlations in domain growth 

T J Newman and A J Bray 
Department of Theoretical Physics, The University, Manchester MI3 9PL, UK 

Received 18 December 1989 

Abstract. The dynamics of the n-component Ginzburg-Landau model with non-conserved 
order parameter (model A) are considered following a quench to zero temperature. The 
correlation function of the order parameter field is found, in the I / n  expansion, to have 
the asymptotic scaling form Ck(f, 1 ’ )  = f’d’2(t/f‘)*’2f(k2t, k 2 f ’ )  for I >> t ’ ,  with f(0,O) = 
constant. The new exponent A is calculated to O( 1/ n )  for general space dimension d, and 
has a non-trivial dependence on n and d. 

The study of the growth of order, following the quench of a system from the high- 
temperature to the low-temperature phase, has a long history (see e.g. [ 13). Most work 
has been devoted to the equal-time structure factor, which carries information about 
the evolving order. Relatively little consideration has been given to correlations between 
the order parameter field at different timest. In this letter we show that such correlations 
require a new, non-trivial exponent for their description. 

We consider the asymptotic dynamics of a system with a non-conserved vector 
order parameter, 4 = ( + I ,  . . . , +”), following a quench to zero temperature. In par- 
ticular we shall derive, via a diagrammatic expansion of the equation of motion, an 
expression for the correlation function ck(t, t ’ )  = [+;( t)4!+( r ’ ) ] .  The equal-time struc- 
ture factor is just &(f) = c k ( t ,  r ) .  Here square brackets indicate an average over the 
ensemble of possible initial conditions, and 4 k (  t )  is simply the spatial Fourier transform 
of 4(x, t ) .  For late times, &(f) is expected to take the scaling form [ l ]  

s k  ( t )  = L( t dg ( kL( t )  ) (1) 
where L( t )  - t”’ is the characteristic scale of spatial order at time t. The prefactor 
L ( t ) d  in (1) indicates the emergence of a Bragg peak at k = O  for t+m. Below we 
shall show, in the context of a l / n  expansion for a non-conserved order parameter, 
that the more general correlation function Ck(f, 1 ‘ )  has the scaling form 

Ck(t, f’) = L(r’)d(L(t)/L(t’))Af(kL(r), kL(t’)) 1 >> t’ (2)  
where f ( 0 , O )  is a constant and A is a new exponent with no simple dependence on n 
and d. To O ( l / n )  it is given by 

(3) A = d / 2 -  (4/3)d”(2d(d +2)/9)B(d/2+ 1, d /2+  l ) ( l / n ) + O ( l / n * )  

where B(x ,  y )  = r ( x ) r ( y ) / r ( x + y )  is the beta function [3]. 
A recent analysis [4] of the above system quenched to the critical point yields a 

form similar to (2), but with d replaced by 2 - 77 and L( t )  - t”*  where z is the dynamic 

t Furukawa [Z] has discussed ‘multi-time scaling’ in general terms. 
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critical exponent. In this case also A is a new exponent, i.e. it cannot be expressed in 
terms of z and the static critical exponents. We expect the T=O result for A to be 
valid asymptotically for a quench to any temperature T < T, since thermal fluctuations 
should be irrelevant below T, for d > 2. ( d  > 1 for a scalar order parameter.) For 
d < 2  our results are limited to T=O since the system does not order at non-zero 
temperature. 

The system is described by a standard Ginzburg-Landau functional, and the 
dynamics is governed by the following equation of motion: 

Since the system is quenched to zero temperature, there is no thermal noise, and all 
averages will be taken over the initial conditions. These will be taken to have a Gaussian 
distribution, with mean zero and correlator defined by 

For this distribution it is easy to show, using integration by parts, that Ck(t, 0) is 
trivially related to the averaged response of the order parameter to the initial conditions: 

We shall refer to Gk(t)  as the ‘response function’. 
It is simplest, in the first instance, to set the shorter time t’ equal to zero, i.e. to 

look at the correlation of the order parameter with the initial condition, as in (6). The 
role of t’  in (2) is then played by a suitable short-time cut-off to (see below), and the 
exponent A can be inferred from the t dependence. In particular, the response function 
has the scaling form Gk( t )  = tA’2h(k2t).  The extension to general t’ is straightforward. 

To proceed we perform a diagrammatic expansion about the solution of the 
Gaussian model (U = 0). Setting U = 0 in (4) gives 

4 i ( t )  = +:(o) exp(r-k*)t. ( 7 )  

Expanding about this solution in powers of U and averaging over the initial 
conditions gives, in the limit n + 00, the following self-consistent expression for Gk( t ) :  

where 

A ( t ) = - r + u A z  GP(t)’. (9) 
P 

To determine A ( t )  we substitute (8) into (9) and perform an unrestricted sum over 
the momentum p. This yields 

where Kd is defined by Zp exp(-2p2t) = Kd/td”.  We now restrict our attention to 
long times. For consistency in (10) we require A ( t ) + - d / 4 t  for t+m. Then 
jA dt ’  A( t ‘ )  + - ( d / 4 )  In( t /  to) for large 1. Using this in (10) determines to through 

r = uKd A/ (11) 
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We then have the leading-order expressions for Gk(t )  and c k ( t ,  t ’ ) ,  (for n +CO, 

C k  ( t ,  t ’) = A Gk ( t ) Gk ( t ’) ) : 

Gk( t )  = ( t /  exp( - k 2 t )  (12)  

and 

CA( t, t ’ )  = A( tt‘/ ti)d’4 exp[ - k 2 (  t + t ’ ) ]  

for t ,  t’ >> to. Summing S,( t )  = Ck( t ,  t )  over k and using (1 1)  yields the expected result 
XkSk( t )  = K,A/t,d” = r / u ,  equal to the square of the equilibrium magnetisation. 

We notice from this leading-order calculation that the structure function has the 
expected scaling form ( I ) ,  with L( t )  = t l ‘ 2  and f ( x )  = exp( - 2 x ) .  This leading-order 
result has also been obtained by Coniglio and Zannetti [ 5 ] .  The response function 
also scales, with A = d / 2  to leading order. 

We now wish to extend this leading-order result by calculating the corrections to 
the above correlation functions due to terms in the diagrammatic expansion of O( l / n ) .  
We shall find the following results: ( i )  the structure factor retains the scaling form ( 1 )  
at O( l / n ) ,  with a modified scaling function; (ii) the exponent A picks up a contribution 
of O ( l / n )  which is a non-trivial function of d, implying that it is distinct from 
established exponents. Only the outline of the calculation shall be given here; details 
of the complete calculation and other results will be presented in a future publication 

We shall denote the O ( l / n )  contributions to the structure factor and the response 
function by a prime, and add an ‘00’ superscript to the previous leading-order results. 
Therefore 

[61. 

and 

1 
n 

Ck(t ,  t ‘ ) =  C?(t, t ‘ ) + -  C ; ( t ,  t’)+O 

Keeping all O( l / n )  contributions from the diagrammatic expansion, we find that G;( t )  
and C;(t ,  t ’ )  have the following forms: 

and 

C;(t ,  t’) = A [ G p ( t ) G ; ( t ’ ) +  G?(t’)G;(r)]  

The functions ilk( t ,  , t 2 )  (‘self-energy’) and a k ( t l ,  t z )  are expressed in terms of diagrams 
and are shown in figures 1 and 2 respectively. 

The elements of these diagrams are as follows. A circle corresponds to the origin 
of time and carries a weight of A. A single line emerging from a circle corresponds 
to the response function calculated at leading order and is given by (12). There are 
two elements which were not present at leading order and these need to be explicitly 
calculated before we may evaluate the diagrams. The first of these is a single line 
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(a )  Ibl I C )  id) (el 

Figure 1. Diagrams contributing to the ‘self-energy‘ I I k ( t , ,  t 2 )  at O ( l / n ) .  Diagrams ( b )  
and ( d )  each carry a combinatoric factor of 2. 

Figure 2. O ( l / n )  diagram for the function n,(t,, t 2 )  of (17) .  

connecting two non-zero times. This is written as G;( t, t’) where t > t’. It corresponds 
to the response of the order parameter (at time 1 )  with respect to thermal noise (acting 
at t’) in the limit of infinitesimally weak noise, i.e. 

After explicit calculation, we find that 

where the last equality requires f ‘ > >  to. The second element is the wavy line, which is 
a ‘dressed vertex’ given by the usual ‘bubble sum’ of the l / n  expansion (see e.g. [7]). 
It is written as u k ( t ,  t’) with t > t’, and satisfies the equation 

u k ( t ,  t ’ ) =  & ( t -  t ’ ) - 2 ~ A  dt”  u k ( t ,  f “ )  G~(t’)G?, , ( t”)G~+;, , ( t” ,  t ’ ) .  (20) 1,: P 

Inserting (12) and (19), evaluating the momentum sum, and making use of (1 l ) ,  yields 
the integral equation 

We have been unable to solve this integral equation exactly. However, we can express 
U k ( t ,  t’) in terms of a controlled expansion about the solution of the soluble integral 
equation 

f k ( f ,  t ’ )=us ( t - t ’ ) -2r  dt”fk(r, r”)exp[-k2(f”-r’)]. (22) I,: 
The solution of this second integral equation may be obtained by either Laplace 
transform, or differentiation, and is given by 

f k ( r ,  t ’ ) =  u { 6 ( t - t ’ ) - 2 r e x p [ - 2 r ( t - t ’ ) ] } e x p [ - k 2 ( t - r ’ ) ] .  (23) 
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Expanding around this solution in (21) yields the following form for uk(t, t’): 

u k ( t ,  t f )  =h(t, t’)pk(t, t ’ )  (24) 

where 

plus terms of higher order in k 2 ( t  - t’)’/2t. 
The diagrams in figures 1 and 2 may now be evaluated. Since we are only interested 

in asymptotically large times, we exploit the fact that rt >> 1 when integrating over the 
time arguments of the wavy line; i.e. when integrating u k (  t, t ‘ )g(  t ’ )  over t’, for a general 
function g( t’), we have the following relation (via integration by parts): 

dt  uk( t, t ’ )g(  t ’ )  = [exp - k 2 ( t  - t’)]pk( t, t ’ )g(  t ’ )  I’ 
This implies that for all leading-order results, we may simply set p k (  t ,  t ’ )  = 1, because 

In order to determine the exponent A of (2), it is sufficient, and computationally 
convenient, to work at external momentum k = 0, i.e. we compute Go( t )  - L( t ) ^  - ?”I2 .  
We find that all diagrams in figure 1 (after integration over external propagators) have 
leading large-t behaviour proportional to In( t /  to)Gr( t ) ,  where we have introduced to 
as a lower cut-off on the (logarithmically divergent) final time integral. However, 
diagrams cancel in pairs as far as the leading logarithm is concerned: (1( a )  + 1( b)) 
and (1( c) + l (d) )  each give a net contribution of O( 1) times G r (  t ) .  This leaves diagram 
l(e) .  Calculating the prefactor of the logarithmic term from l ( e )  explicitly gives 

{apk( t, t f ) / a t ’ } , , , ,  = 0. 

Go(t) = G r ( t ) [ l + ( l / n ) ( a  ln( t / to )+0(1) )+O(l /n2) ]  (27) 
where a is a non-trivial function of d. Using (12) for G r (  t ) ,  and exponentiating the 
logarithm, gives Go( t )  = ( f/t0)*/* with A given by (3). 

The analogous result for Co(t, r ’ ) ,  to leading logarithmic accuracy, is 

Co(t, t’) = A G ~ ( t ) G ~ ( t ‘ ) { l  +(a/n)[ln(t’/to)+ln(t/to)-2 ln(t’/to)]+O(l/n2)} (28) 
for t >> t’, where the three logarithms are associated with the three terms in (17). The 
equal-time correlation function is also given by (28), with t ’ =  t, to leading logarithmic 
accuracy. For t ’ =  t, therefore, the final term in (17), associated with the diagram of 
figure 2, exactly cancels the contributions of diagram 1( e) to each of the first two terms 
in (17). Hence the exponent associated with the structure factor is unchanged to 
O( l /n )  (and presumably to all orders), and & ( t )  retains the standard scaling form 
( l ) ,  although the scaling function g(x) does acquire corrections. For t >> t ’ ,  using (12) 
for G; and exponentiating the logarithms in (28) gives CO( t, t’) = ( t ’ /  tO)d’2(  t /  t‘)”’, as 
required by (2). 

For general k, the arguments of scaling functions retain the form k 2 t  to O(l /n) .  
We expect this to remain true to all orders in l / n ,  since the scaling variable reflects 
the growth of the characteristic length scale L ( t )  - t”’. By analogy with critical 
phenomena, we can think of k2 t  as k‘t with z = 2  being the ‘dynamical exponent at 
the zero-temperature fixed point’ for a non-conserved order parameter [8]. 

In conclusion, a new exponent for dynamic correlations in domain growth has 
been evaluated: it is the analogue for the ‘zero-temperature fixed point’ of the recently 
discussed exponent describing dynamic correlations following a quench to the critical 
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point [4]. For the latter case, also, the exponent A can be calculated for n = 00 [4]. 
The result is A, = (4  - d ) / 2 ,  where the subscript indicates a critical exponent. For d = 2 
we find A = A,( = l) ,  as expected since the critical and zero-temperature fixed points 
merge as d approaches the ‘lower critical dimension’ d, = 2 .  Note that, while A, can 
also be evaluated, for general n, as an expansion in E = 4 - d [4], there is no analogous 
expansion for A : the 1/ n expansion seems to be the only systematic tool available at 
the T=O fixed point. 

The exponent A is, as far as we are aware, the first non-trivial exponent to be 
predicted for a zero-temperature fixed point. It should be relatively straightforward 
to measure, e.g. by computer simulation, for both scalar and vector order parameters. 
The autocorrelation function with the initial condition, C ( t )  = [4i(t) . 4i(0)], would 
seem the simplest quantity to compute numerically. Scaling gives C( t )  - t*”Xkh(  k 2 t )  - 
l / t ‘ d - ” ” 2 .  Note that, at T = 0, this form should hold for any d, including d = 1. 
Preliminary studies [9] of classical Heisenberg spin chains (i.e. n = 3)  confirm the 
predicted power-law decay of C (  t ) ,  and yield A = 0.34. This can be compared with 
(3) ,  which gives A = 1 / 2 - ( n / 6 J 3 ) ( l / n ) + O ( l / n 2 )  for d = 1. For n = 3 ,  this yields 
A ~ 0 . 4 0  to O ( l / n ) .  The case n = 2 (classical X Y  spins) is found to be anomalous, 
with a stretched-exponential decay, C( t )  - exp(-adt), and a characteristic length scale 
L(f)- t ”4  [9]. This can be understood from simple analytical arguments [9], and 
details will be presented elsewhere. 

We thank M A Moore for stimulating discussions. TJN thanks the SERC for financial 
support. 

Note added in prooJ: Zanetti and Mazenko [ 101 have determined the exponent A for n = OC, d = 3 by solving 
numerically the equations of the n = m  limit for a non-zero temperature T <  T,. They find A = 3/2, in 
agreement with the first term in equation (3) .  
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